Towards Computing the Grothendieck constant

ثبت نشده
چکیده

The Grothendieck constant KG is the smallest constant such that for every n ∈ N and every matrix A = (ai j) the following holds,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards computing the Grothendieck constant

The Grothendieck constant KG is the smallest constant such that for every d ∈ N and every matrix A = (aij),

متن کامل

Recent Work on the Propeller Conjecture

How can one prove a sharp inequality? Symmetrization, Fourier analysis, and probability are often used, and we will survey some of these methods through examples. We then survey sharp constants in Grothendieck inequalities, leading to some recent work on computing the best constant for a Grothendieck-type inequality of Khot and Naor. (Joint work with Aukosh Jagannath and Assaf Naor)

متن کامل

Computing the Grothendieck constant of some graph classes

Given a graph G = ([n], E) and w ∈ R , consider the integer program maxx∈{±1}n ∑ ij∈E wijxixj and its canonical semidefinite programming relaxation max ∑ ij∈E wijv T i vj , where the maximum is taken over all unit vectors vi ∈ R. The integrality gap of this relaxation is known as the Grothendieck constant κ(G) of G. We present a closed-form formula for the Grothendieck constant of K5-minor free...

متن کامل

Approximating the little Grothendieck problem over the orthogonal and unitary groups

The little Grothendieck problem consists of maximizing Σ ij Cijxixj for a positive semidef-inite matrix C, over binary variables xi ∈ {±1}. In this paper we focus on a natural generalization of this problem, the little Grothendieck problem over the orthogonal group. Given C ∈ ℝ dn × dn a positive semidefinite matrix, the objective is to maximize [Formula: see text] restricting Oi to take values...

متن کامل

Approximating the Little Grothendieck Problem over the Orthogonal Group

The little Grothendieck problem (a special case of Boolean quadratic optimization) consists of maximizing ∑ ij Cijxixj over binary variables xi ∈ {±1}, where C is a positive semidefinite matrix. In this paper we focus on a natural generalization of this problem, the little Grothendieck problem over the orthogonal group. Given C ∈ Rdn×dn a positive semidefinite matrix, the objective is to maximi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008